C3 Trigonometry Harmonic Form

1. Express $2 \sin x + 3 \cos x$ in the form $R \sin(x + \alpha)$ where $0^{\circ} < \alpha < 90^{\circ}$.

 $\sqrt{13}\sin(x + 56.3)$

2. Express $\cos x - \sin x$ in the form $R \cos(x + \alpha)$ where $0 < \alpha < \frac{\pi}{2}$.

 $\sqrt{2}\cos(x+\frac{\pi}{4})$

3. Express $3\cos 2x + 4\sin 2x$ in the form $R\cos(2x - \alpha)$ where $0^{\circ} < \alpha < 90^{\circ}$.

 $5\cos(2x - 53.1)$

4. Express $\sin \theta + \sqrt{3} \cos \theta$ in the form $R \sin(\theta + \alpha)$ where $0 < \alpha < \frac{\pi}{2}$.

 $2\sin(\theta + \frac{\pi}{3})$

5. Express $2\cos n\theta + \frac{1}{2}\sin n\theta$ in the form $R\cos(n\theta - \alpha)$ where $0 < \alpha < \frac{\pi}{2}$.

 $\frac{\sqrt{17}}{2}\cos(n\theta - 0.245)$

6. Express $\sqrt{3}\sin 3\theta - \cos 3\theta$ in the form $R\sin(3\theta - \alpha)$ where $0^{\circ} < \alpha < 90^{\circ}$.

7. Solve $\cos 2\theta + 3\sin 2\theta = -1$ for $0 < \theta < 2\pi$.

8. By expressing $3 \sin x + 2 \cos x$ in the form $R \sin(x + \alpha)$, find the maximum value of

$$3\sin x + 2\cos x$$

and the smallest positive value of x (in degrees) for which this occurs. Max value of $\sqrt{13}$ when $x = 56.3^{\circ}$

(a) What is the maximum value of $\frac{8}{5 + 2\cos(\theta - 20)}$?

(b) What is the smallest positive value of θ for which this maximum occurs?

1 J.M.Stone