Finding the Equations of Lines

The default way of writing the equation of a line is

$$y = mx + c$$
.

Remember also that the gradient between two points is given by

$$grad = \frac{\text{change in } y}{\text{change in } x} = \frac{y_2 - y_1}{x_2 - x_1}.$$

Also remember that given a point that a line goes through (x_1, y_1) and its gradient, the line's equation is

$$y - y_1 = m(x - x_1).$$

Find the equations of the following lines in the form y = mx + c

1. Line with gradient 4, passing through the point (2, -5).

y = 4x - 13

2. The line that passes through (1,1) and (4,7).

y = 2x - 1

3. Line with gradient -1, passing through the point (3, 2).

y = -x + 5

4. The line that passes through (2, -3) and (0, 1).

y = -2x + 1

5. Line with gradient $\frac{1}{2}$, passing through the point (10,3).

 $y = \frac{1}{2}x - 2$

6. The line that passes through (0,1) and (6,4).

 $y = \frac{1}{2}x + 1$

7. Line with gradient $-\frac{1}{3}$, passing through the point (1, -4).

 $y = -\frac{1}{3}x - \frac{11}{3}$

8. The line that passes through (-3,0) and (1,-1).

 $y = -\frac{1}{4}x - \frac{3}{4}$

9. Line with gradient $\frac{2}{3}$, passing through the point (0,0).

 $y = \frac{2}{3}x$

10. The line that passes through (-3,2) and (4,-1).

 $y = -\frac{3}{7}x + \frac{5}{7}$

11. Line with gradient $-\frac{5}{2}$, passing through the point (-3,0).

 $y = -\frac{5}{2}x - \frac{15}{2}$

12. The line that passes through $(\frac{1}{2}, \frac{3}{2})$ and (4, -1).

 $y = -\frac{5}{7}x + \frac{13}{7}$

13. Line with gradient $\frac{7}{8}$, passing through the point $\left(-\frac{1}{2}, \frac{5}{3}\right)$.

 $y = \frac{7}{2}x + \frac{101}{12}$

14. The line that passes through $\left(-\frac{2}{3}, \frac{7}{3}\right)$ and $\left(\frac{4}{5}, 1\right)$.

 $y = -\frac{10}{11}x + \frac{19}{11}$

1

J.M.Stone