Review Sheet

Complete the following for first day back. Please complete on lined paper and not your book. Remember the three stage process for factorising (numbers, letters and *then* two brackets on any remaining quadratics) and be on the look out for the difference of two squares (e.g. $(4x^2 - 25) \equiv$ (2x+5)(2x-5)).

1. Factorise fully

(a)	$7x^2 + 42x + 35.$	7(x+1)(x+1)(x+1)(x+1)(x+1)(x+1)(x+1)(x+1)
(b)	$18x^2 - 6x.$	6x(3x -
(c)	$2x^2 + 14x - 60.$	2(x-3)(x+1)
(d)	$4x^2 - 4.$	4(x-1)(x+
(e)	$16x^2 + 8x - 80.$	8(2x+5)(x-
(f)	$100x^2 - 25.$	25(2x+1)(2x -
(g)	$8x^2 + 20x - 12.$	4(2x-1)(x+
(h)	$42x^2 + 77x + 21.$	7(3x+1)(2x+
(i)	$27x^2 + 18x.$	9x(3x +
Solve	9	
(a)	$x^2 + 3x = 10.$	x = 2 or $x = -$
(b)	$x^2 = x + 6.$	x = 3 or x = -
(c)	$7x^2 = 6x.$	x = 0 or $x =$

- (d) $4x^2 = 9$.
- (e) $2x^2 + x = 3$.
- (f) $3x^2 + 4x + 1 = 0$.
- 3. Expand

2. S

(a)	$(2x-3)^3$.	8x	$x^3 - 36x^2 + 54x - 27$
(b)	(2x-1)(x+3)(x-2).		$2x^3 + x^2 - 13x + 6$

4. The triangle ABC has a right angle at B. If $A\hat{C}B = 20$ and BC = 7 find AB.

5. The triangle ABC has a right angle at B. If AB = 16 and BC = 5 find $C\hat{A}B$. 17.354 . . .

6. Triangle ABC is isosceles with AB = AC = 5. If $B\hat{A}C = 78$ find BC.

- 7. Find the gradient between the following points
 - (a) (3, 2) and (1, 1).
 - (b) (-1, 4) and (1, 3).
 - (c) $(\frac{1}{2}, 0)$ and $(\frac{1}{3}, -2)$.
- 8. Find the equation of the line (in the form y = mx + c) the passes through (0,5) and (-10,0). [Draw a sketch to help you!] $y = \frac{1}{2}x + 5$
- 9. Find the equation of the line (in the form y = mx + c) the passes through (0, -4) and (6,0). [Draw a sketch to help you!] $y = \frac{2}{3}x - 4$

J.	M.S	TONE

7(x+1)(x+5)
6x(3x - 1)
2(x-3)(x+10)
4(x-1)(x+1)
8(2x+5)(x-2)
25(2x+1)(2x-1)
4(2x-1)(x+3)
7(3x+1)(2x+3)
9x(3x+2)

x = 2 or x = -5
x = 3 or x = -2
$x = 0 \text{ or } x = \frac{6}{7}$
$x = \frac{3}{2}$ or $x = -\frac{3}{2}$
$x = 1$ or $x = -\frac{3}{2}$
$x = -1$ or $x = -\frac{1}{3}$

6.2932 . . .

 $\frac{1}{2}$

12