Autumn Term Review Sheet 1

1. Multiply out and simplify:

(a) $(x+3)^2 + (2x-1)^2$.	$5x^2 + 2x + 10$
(b) $(2a+b)^2 + (a+3b)^2$.	$5a^2 + 10ab + 10b^2$
(c) $(x-y)^2 - (x+y)(x-2y)$.	$3y^2 - xy$

2. Solve the following equations:

(a) $(x-3)(x-2) = 0.$	x = 3 or $x = 2$
(b) $(3-x)(x+7) = 0.$	x = 3 or x - 7
(c) $x^2 + x - 12 = 0.$	x = -4 or $x = 3$
(d) $3x^2 - 7 = 2x^2 + 6x$.	x = 7 or $x = -1$
(e) $(x+1)(x-3) = 2x - 3$.	x = 0 or $x = 4$
(f) $(2x-1)(x-1) = (x-3)(x-5).$	x = 2 or $x = -7$
(g) $3x + 4y = 5$ 5x - 2y = 4	$x = 1, y = \frac{1}{2}$

3. Make the underlined letter the subject of the following formulae:

(a)	$\frac{a+b}{\underline{c}} = \frac{d}{e}.$
(b)	$V = 2\pi r^2 + 2\pi r \underline{h}.$
(c)	$a\underline{x} + b\underline{x} = c\underline{x} + dy.$

5.

4. Write the following as single fractions (remember; if you are unsure try it with numbers first):

(a) $\frac{a}{b} + \frac{c}{d}$.	$\frac{ad+bc}{bd}$
(b) $a + b\frac{c}{d}$.	$rac{ad+bd+c}{d}$
(c) $\frac{1}{x} - \frac{1}{x+1}$.	$\frac{1}{x(x+1)}$
(d) $\frac{(a/b)}{c}$.	$\frac{a}{bc}$
(e) $\frac{a}{(b/c)}$.	$\frac{a c}{b}$
Find the volume and SA of a cylinder with $r = 5$ cm and $h = 10$ cm.	$V = 250\pi, SA = 150\pi$

- 6. The volume of a cylinder is 100π cm³. Its length is 4cm. Find its radius. Hence, find its SA. $r = 5, SA = 90\pi$
- 7. A sector of a circle has area $5\pi \text{cm}^2$ and r = 10cm. Find its arc length. [Hint: Go from Area to angle to arc length.] $\theta = 18^{\circ}, \text{Arc length} = \pi$
- 8. A ship sails 20km on a bearing of 100° and then sails 40km on a bearing of 200° .

(a) How far east of its original position is the ship?	
--	--

- (b) How far south of its original position is the ship?
- 9. A ship sails 20km on a bearing of 100° and then sails xkm on a bearing of 170° . It ends up 30km east of its original position. Find x.

ends	

e(a+b)

 $V - 2\pi$

 $\frac{dy}{a+b}$

- 10. A ship sails 20km on a bearing of 250° and then sails 30km on a bearing of b° . It ends up 40km west of its original position. Find b.
- 11. A sector of a circle with $\theta = 290^{\circ}$ and r = 10cm is folded into a cone and a circular base added. What is the height and radius of the resulting cone?